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GENERATOR COORDINATE CALCULATIONS
OF TWO-NUCLEON MOMENTUM DISTRIBUTIONS
IN “He, 10 AND 4%Ca NUCLEI

A.N.Antonov! , 1.S.Bonev?, I.Zh.Petkov!

The two-nucleon centre-of-mass and relative motion momentum
distributions for n-p pairs inside the 4He, 16 0 and 49Ca nuclei are
derived from the two-body density matrix obtained in an approach
within the generator coordinate method. Square-well as well as harmo-
nic oscillator construction potentials and Skyrme-like forces are used
in the calculations. The calculated momentum distributions are compa-
red with the results from other correlation approaches. The presence
of high-momentum components in the two-nucleon momentum dis-
tributions in the particular case of square-well construction potential
is due to the effective account of short-range nucleon-nucleon correla-
tions in the approach.

The investigation has been performed at the Laboratory of Theore-
tical Physics, JINR.
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l.Introduction

There is an increasing interest in the nucleon momentum distribu-
tions (NMD) in nuclei, especially in the high-momentum. region, where
this nuclear characteristic reflects the presence of short-range nucleon-
nucleon correlations (SRC) in nuclei. The high-momentum compo-
nent of the NMD is very sensitive to the SRC and can be investigated
in different nuclear processes, such as deep-inelastic scattering of leptons,
protons, pions, alpha-particles and heavy ions in nuclei, nuclear photo-
effect, ete.”1’ . However, there is scanty knowledge about the behaviour
of the NMD at high momenta nowadays. The extracted information
from the experiments is dependent on the suggested model and reaction
mechanism. The main difficulties in the theory are connected with the
consistent account of the SRC in the nuclear models /2-5/ | It can be
noted that the application of the most promising theoretical correlation
schemes to nuclei heavier than some light nuclei is very complicated.
An approach which accounts for SCR and can be applied to both light
and heavy nuclei without significant difficulties is proposed in the
coherent density fluctuation model (CDFM) /1,87 The basic relations
of the CDFM are obtained by a generalization of the delta-function
limit in the generator coordinate method (GCM) /1 The presence of
high-momentum components in the single-particle NMD evaluated
in the CDFM is due to the particular choice of the intermediate generat-
ing states, allowing a certain type of SRC in the nuclei to be accoun-
ted for.

Recently the CDFM was extended for evaluation of the two-
nucleon centre-of-mass and relative motion momentum distributions /8.
The extended model was applied to the 4He, 16O_and 40 Ca nuclei.
Similar to the case of the single-nucleon momentum distribution, the
two-nucleon momentum distributions (TNMD) calculated within the
CDFM have high-momentum components which should be important
for the description of various nuclear reactions, such as two-nucleon
mechanism of 7~ -absorption, backward proton production in proton-
nucleus collisions, etc. The dominant role which the two-nucleon centre
of mass momentum distribution plays for the successful description of
the high-energy part of the back-scattered proton spectra in proton-
nucleus collision is shown by Haneishi and Fujita /9/. They use momen-
tum distributions with high-momentum tails in their calculations. The
prominent high-momentum components of the TNMD in % He nucleus
coming from the account of correlations are derived also by Akaishi /10’
in calculations with Reid soft core potential using the ATMS method
(an abbreviation of Amalgamation of Two-body correlations into Multi-
ple Scattering process).
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The role of the delta-function limit used in the CDFM on the
nucleon momentum distribution has been studied” !1'12/ in the frame-
work of the generator coordinate method v, Skyrme-like effective
forces and different construction potentials have been used in the cal-
culations of the NMD in ¢ He, 80 and %°Ca.

The purpose of the present work is to calculate the two-nucleon
momentum distributions in the GCM approach, avoiding the delta-
function approximation in the CDFM with respect to the TNMD. We use
the two-body density matrix obtained in the GCM with square-well
and harmonic oscillator construction potentials as well as Skyrme-
like forces in this approach. In Sect.2 a brief review of the main relations
in the GCM are given. The derivation of the two-body density matrix
and TNMD for n-p pairs inside the nucleus in the framework of the
GCM are presented in Sect.3. In Sect.4 the calculations of the TNMD
in *He, 160 and *° Ca nuclei are presented in both the cases of harmo-
nic oscillator and square-well construction potentials. The comparison
with other theoretical results is also presented and discussed.

2. GCM General Relations

In the GCM the wave function ¥ for an A-particle system is writ-
ten in the form’7/ :

‘P(?l' ?2, see gy ?A) = r da f(a) q)(a; Fln ?2! sony ?A) ’ (1)
where Q(a;{?i b (=1, 2, .. A)is the generating function and the
unknown weight function f(a) is determined by solving the Griffin-
Hill-Wheeler equation:

f[{H(a, a’) ~El(a,a’) ) f(a’)da’=0. (2)
The overlap integral I and the energy kernel X in eq.(2) are of the forms

I(@,a") = <®la; {r, D) [ $a’; IF, >, (3)

H(a,a’) =<®(a ;{:ii)lﬁl‘d“(a'; {;i H>, (4)

and H is the hamiltonian of the system.

Following the GCM approach proposed in /11 12/ | the generating
wave function ®(a; {r;}) is taken to be a Slater determinant construc-
ted from. neutron and proton orbitals ¢A(a, ?) (x=1, 2, ..., A/4),
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which correspond to a given construction potential. We consider two
different potentials in this work — a square-well with infinite walls
and a harmonic oscillator. In these cases the generator coordinate is the
radius of the well and the oscillator parameter, correspondingly. When
Skyrme-like forces are used, the energy kernel K in eq.(4) takes the
form 713/ ;

H(a,a) =1(a,a”) [H(a, a’,)dr. (5)
Further we shall restrict our considerations to spin saturated

N = 2 nuclei 3nd neglecting the s;)in-orbit and Coulomb forces. In this
case H(a,a’, 1) is given by /147,

N 1 3, 2. 1 Te
H(a,a,t):.._T+_t P + —(3t . + 5t )(pT+j ) +
2m g © 6 ! 7
(6)
1 2 1 2+0
=(9t, - 5t ( -t ,
+ 64( 1 2) (Vo)™ + Tl

where the quantities t_, t,, t 5, t3and o are the Skyrme-force para-
meters. The density p, the kinetic energy density T and the current
density j are defined by

-+ A/,4 -1 - -»
pla,a’, ) = 4)‘13;104 ) n $L@, 1) ¢, (@’ 1), (7)
- A/4 -1 -» , = 8
T(ayavr) = 4A’uz-;1 (N )“A V¢§(a, r) * V‘b#(a vr) ’ ( )
-» A/4 -1 - -», -, -,
j(a,a’;t) = 2 )Hil (N )M {qS‘;(a, r) Vqs‘1 (a’r) —(Vé")'{(a,r))éu(a D,
(9)
where
Ny, = [ AT ¢3 (a, T) ¢u(a',*r) , (10)

and the overlap kernel (3) is given by

I(a,a’):[det(NM)]'*. : (11)
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In order to solve the Griffin-Hill-Wheeler equation (2) we use
a discretization procedure similar to that of ref.”'%. Thus eq.(2)
is reduced to a matrix eigenvalue problem:

[ Y ’ ’, _ 12
Ei[}((aj,ai) El(a,,a})lte]) =0, (12)
The c.m. correlations are taken into account as in 714/,

3. Two-Nucleon Momentum Distributions

We consider the GCM wave function ¥ for an A-particle system
written in the form:

‘l‘(fl,tfz,..., {"A ) = [dat(a) ¥la; 61,52, vees fA ), (13)
where each coordinate £; (i =1, 2, ..., A) stands for the space coordi-
nate r_, the spm coordinate s; and the coordinate of the isotopic spin

i’
7, le. ‘fi—(’l"’i"i) “(ri'"i) with n; =(0;, 7;);ais
the generator coordinate, and the function & is the generating function.

In order to derive an expression for the TNMD in GCM we start

with the two-body density matrix:

PP &L E, &L E) =

. I (14)
="‘"A(A"'1) b3 fdfs...dl'A‘l‘ (flof y‘f f )‘P(n 196',63 ".fA)

2 TgeeaMy

Using the many-particle wave function (13), the two-body density
matrix in GCM can be expressed in the form

PP, E,:6,€)) =

(15)
= [dat*a) [da’t@") p® (a,a”; £, £,: €, £1), .
where
pPla,a’i £,£,:87,6,) =
1 5k , (16)
= EA(A—I)%"E'”A [arge..dr @ (a;€),&,,¢5..8, )0 €, €5, €50 &)
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If the generating wave functions ¢ are Slater determinants con-
structed from an orthonormal and complete set of one-particle func-
tions ¢,(a, &), t}le matrix (16) can be expressed by the quantity

pla, a’ .rf &7 )
p®la,a’ €, 6,80, &) =

» I(a,a') P(a’a'; 619 5’1) 'p(a’a’;fly‘fé‘) (17)
R1 pla, a’; «fz, f;) pla,a’; fzs ‘fé)
where
PN Y < ’ , -1
pla,a’; £,& )—' k,22=-1 qb;‘(a, & ¢e(a.f ) (N )Zk . (18)
In (18) (N —1) tx is the inverse matrix to the matrix N ,. defined by
Ng =% (@ $}(a &) ¢y, &) (19)
and I(a, a’) is the overlap integral from eq.(3):
I(a, a’) = det(N ke) . (20)

Thus we get the following expression for the two-body density matrix
in the GCM:

p® (£, 6, €1,6%) = 5 [dat*(@) [dat@@) (@ a”) o
<[ pla, a’; 61,,51' Ypla,a’; {-’2, Eé) ~pla, a’; fl,fé)‘P(a,a';fg,f{)]-

The two-nucleon momentum distribution n® (£ ,¢,) s
related to the diagonal elements of the two-body density matrix in the
momentum space

0® (¢ ,¢, ) =p® L, L) (22)

wherec (k,o r)_(k,r;) with niz(ai,ri),andki
is the momentum o% the i-th nucleon
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Further we restrict our considerations to spin saturated N = 2
nuclei. After summation over 0y,0,,0, and 71, (r,# 1) we get
for the case of n-p pairs:

(2) (l: ; ) =% fdat*(a) da’ f(a”) Na,a”) E(a,a;gl) 'E(a,a’;l_;a) ,
(23)
where
. > A/4
pla, a’; k) = 4)\,2 (N~ )A d’)\(a k) ¢ {a’, ). (24)

¢’\ (a, k) are the Fourier transform of the orbitals ¢ A(a, r) , and
each orbital state is occupied by 4 nucleons.

Introducing the relative q and the center of mass f; momenta of
the n-p pair by

-

> > -+ > -
q=(k"‘k2)/2: p=k1+k2v (25)

the following expressions for the center of mass and the relative motion
TNMD for n-p pairs inside the nucleus can be obtained

cm. By dq a® B 2 P o 26

no ®= .r—-—-—(z”)s B (5 +0 5 -, . (26)

rel. ® @ .2 B _2 217
= f —1 —— y — = .

n, @=f @m)3 "oe G +e 5 -0 (27)

Both distributions (egs. (26) and (27)) are normalized to A ?/4.

4. Results and Discussion

The TNMD ncm (eq. (260)) and n'%  (eq.(27)) are calculated
in the cases of He 180 and “%Ca nuclei within the proposed GCM-
scheme and using both square-well and harmonic oscillator construc-
tion potentials. The values of the Skyrme parameters in (6) for the
case of square-well construction potential were taken from ref. /12’
where they are determined to fit the binding energies of 4He 1"O
and 4%Ca (t, = -2765.0, t; = 383.94, t ;= -38.04, t3 = 15865 and
o= 1/6). In the case of harmonic oscillator construction potent1a1

the SkM* parameter set is used 718/
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Fig.1. Two-nucleon centre-of-mass (a) and relative state (b) momentum distributions

of n-p pairs in 4He. ....... harmonic-oscillator shell-model result; **+++ GCM with
harmonic-oscillator construction potential

; — — — — GCM with square-well construc-
tion potential; -----.- the CDFM result/8/ ; —s—me—er henomenological distri-
butions" from 79/, —e=e=s= the ATMS result from”19’ The normalization is
[0y (k) dk/(2m) 3=1,
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Fig.2. Two-nucleon centre-of-mass (a) and relative state (b) momentum distributions
of n-p pairs in 169, ... harmonic-oscillator shell-model result; **+++ GCM with
harmonic-oscillator construction potential; GCM with square-well construc-

tion potential; ------ the CDFM result” 8/ . —':‘—‘3— phenomenological distributions
from/9/, The normalizationis [ n np (ﬁ‘) dk/(2m)°= 1.
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Fig.3. Two-nucleon centre-of-mass (a) and relative state (b) momentum distributions
of n-p pairs in 40 ¢y harmonic-oscillator shell-model results; = *++* GCM with
harmonic-oscillator construction potential; —— —— —
struction potential; ------ the CDFM result '8

T phenomenological distri-
butions from ‘9 ‘. The normalization is [ nyp(K) ak/ (emy3=1.

GCM with square-well con-

The Griffin-Hill-Wheeler equation (2) is reduced to a matrix eigen-
value problem (eq. (12)) and the lowest solution f (a) is substituted
in eq. (23) in order to calculate the TNMD’s ((26) and (27)) in the
nuclear ground state.

The calculated TNMD’s of 4He, 180 and 4°Ca are presented in
Figs. 1, 2 and 3, respectively. The calculated momentum distributions
are compared with those obtained in the model from ref. /97 , as well

as with those from CDFM calculations ‘8. In the case of *He nucleus
the comparison with variational ATMS calculations "10/ with Reid
soft-core N-N interaction is made.

We note that the existence of high-momentum components in the
two-nucleon momentum distributions in the particular case of square-
well construction potential is an evidence for the effective account
of short-range nucleon-nucleon correlations in this approach within the
generator coordinate method. This fact is obviously due to the presence
of intermediate states in the GCM with a high density (at small values

of the generator coordinate x) at which the nucleons are close to each
other and the SRC are operative.
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In conclusion it has to be emphasized that the experimental inves-

tigations concerning the two-nucleon momentum distributions would
be of great interest. "
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